ICML

International Conference
On Machine Learning

Pascal Welke* 1=

TL;DR

Expectation-Complete
Graph Representations with
Homomorphisms

Maximilian Thiessen*
1TU Wien

' Fabian Jogl*

2University of Bonn

Complete in Expectation

A TU

UNIVERSITATEIJNIYI WIEN

Thomas Gartner?

Homomorphisms

Through the power of random features
we devise efficiently computable and
expectation complete graph embeddings.

We call ¢ x complete in expectation if the expectation

Expressiveness

Graph representation methods are compared to
each other in terms of expressiveness. That is,
their (theoretical) ability to compute different rep-
resentations for pairs of non-isomorphic graphs.

For example, MPNNs are at most as expressive as
the 1-WL isomorphism test.

High expressiveness is necessary for learning: If
yvour method cannot distinguish two graphs, it
cannot learn a function that behaves differently

Ex plex()] =Y Pr(X =t)e(-)
leX

Is a complete graph embedding

What is the benefit?

Sampling X1, X9, X3, ..

. will eventually make the
joint embedding (¢x,(G), ©x,(G), px,(G), ...) arbitrarily expressive

Let px : G — V depend on a random variable X drawn from a distribution
D overaset X

Our Approach: Sampling from the Lovasz Vector

on these graphs.

Let G,, be the set of all graphs with at most n vertices.

Completeness

G the set of all graphs, V' a vector space (e.g., RY)

A graph embedding ¢ : G — V is permutation-
invariant if for all isomorphic graphs

G~H:p(G)=ypH)

A permutation-invariant graph embedding ¢ is
complete if for all non-isomorphic graphs

G2 H:p(G)+# p(H)

= //o
T
v

Originated from complete graph kernels [Gartner et
al., COLT 2003]

gOF(G) — hom(F, G)BF

with F' ~ D is complete in expectation.

= the parameter n is typically the size of the largest graph in the sample.

n(G)

- 120

| 30

R

Proposed embedding: sample multiple pattern graphs F

or(G) = op(G)

FeF

= reduces the variance of the embedding

= currently ¢ = |F| is a fixed hyperparameter (e.g., £ = 30)

Problem

Why do we care about complete graph embed-
dings?

Efficient Sampling Scheme

17140

50

10

= draw a finite sample F Li.d from D and represent any graph G € G, by

Theorem. Let D be a distribution with full support on G,, and G € G,,. The graph embedding

X
o O

Let F', G be graphs. Amap ¢ : V(F) = V(G) is a
graph homomorphism if ¢ preserves edges:

{fv,w} € E(F) implies {o(v), o(w)} € E(G).

¢ does not have to be injective (!)

hom(F, G): number of homomorphisms from F
to G.

The Lovasz Vector

Let pp(G) = hom(Gp, G) = (hom(F, G))peg, de-
note the Lovasz vector of GG for G,,.

Theorem [Lovasz, 1968]. Two arbitrary graphs
G, H € G, are isomorphic iff o,(G) = ¢n(H).

That means that ¢, (+) is complete!

Properties of Homomorphism Counts

Allow us to learn/approximate any
permutation-invariant function!

Unfortunately computing any such embedding is
at least as hard as deciding graph isomorphism

= not known to be NP-hard and not known to be
computable in polynomial-time

Computing hom(F, G) is NP-hard in general.

O (IVF)|vie) ™

|dea: define distribution D on G,, s.t. runtime is polynomial in expectation!

If we take the treewidth of pattern F' into account the runtime is [Diaz et al., 2002]:

Theorem. There exists a distribution D such that computing the expectation complete graph em-

Typical solution: drop completeness for efficiency

= most practical graph kernels, GNNs, Weisfeiler
Leman test, k-WL test, ...

General recipe:

1. pick n as the maximum number of vertices in the training set

Our solution: keep completeness in expectation!

2. sample treewidth upper bound k&

3. sample a maximal graph F’ with treewidth &
4. take a random subgraph F of F'

bedding ¢ p(G) takes polynomial time in |[V(G)| in expectation for all G € G,,.

E.g., k ~ Poi(A\) with A < Hd?iogn guarantees runtime O (lV(G)|d+2)

Working on Arbitrary Graph Sizes

If we cannot restrict the size of graphs at inference time, we
can define a kernel on G4 without restricting to G,, for some
n € N. We define the countable-dimensional vector

Poo(G) = <h0m|V(G)|(Fa G))Fegw

where
hom(F,G) if [V(F)| <|V(G)],
homV(G)(F,G){ om(F,G) it [V(F)] < [V(G)

0 it |[V(E)| > |V(G).

That is, Peo(G) Is the projection of pso(G) to the subspace
that gives us the homomorphism counts for all graphs of size
at most of G. Note that this is a well-defined map of graphs
to a subspace of the ¢? space, i.e., sequences (x;); over R
with 37 |2 < .

Theorem. P is complete.

Theorem. @y is complete in expectation.

The map P even maps all graphs into an inner product
space and allows to compute norms or distances, and to ap-
ply kernel methods.

Empirical Results

how ({03,0)= | V(a)l
hour ((o3, G) = A(ELCE)]
how (i’, 0-0,0"\0,./?\),-&,&)

/—-__\ desc-e.e Se?ue/uce OC G

T .--
houwn (golo—o, A,o:‘g[3‘6.) - (a)
A eigev\vab*e& of ad)

- ATV
how (SFIF i atedC)SA-WL =0

VS
how (§ Fl tXJCF) <3 C)Dle-WL= lo-C Ank
L-Lre.ew’\cuh of F (‘Ycee ‘C(aewssj

Counting subgraphs [Curticapean et al., STOC 2017]

5‘*b (\3\0\‘3\0, C) =
217 houa C.\o\‘\o\g ,C\> ~ lown (b\:la)

- hown (\0\0,&) -1/2\40*«(&314)
- 4 \A.ovvx(o"L, ,C\) -{—3/1_(40\44(4/4)

* 512 hown (=0, &) = how(~, G)

Universality [NT and Maehara, ICML 2020]:
permutation-invariant function

f:G—R

can be approximated arbitrarily well by a polyno-
mial of

Any

{hom(F,G) | F € G}

Expectation-Complete GNNs

Our method with ¢ = 50 sampled patterns and the 5 embedding

S B
G
L

GNN
Layers

Graph
Pooling

MLP

or(G) — |

Future Work

DATA SET —- MOLBACE MOLCLINTOX MOLBBBP MOLSIDER MOLTOXCAST
1 MODEL roc-auc 1 roc-auc 1 roc-auct roc-auc 1 roc-auc 1
GIN 82.2 £ 2.0 61.2+4.5 60.9 + 2.4 57.5+14 571408
GIN+hom 827+ 1.8 61.5+4.1 63.0+1.1 584 +1.2 581+0.5
GCN 81.4+24 68.4 £+ 3.6 59.2 £ 1.0 58.2+1.3 58.6+0.6
GCN+hom 84.6 1.3 63.4 £4.7 61.2+0.7 59.2+1.2 594+04
GIN+F 75.5 3.0 84.8 £ 3.7 67.2 £ 1.5 57.7+1.8 61.84+0.8
GIN+hom+F 76.4+ 2.6 86.9 £ 3.5 68.8+1.3 584 +1.5 63.2+0.8
GCN+F 82.2+1.4 88.2 £ 3.0 66.4 £+ 2.6 59.3+1.6 65.74+04
GCN+hom+F 81.34+1.6 904+ 2.0 70.8 1.2 60019 658=*0.8

MOLLIPO MOLTOX21 MOLESOL MOLHIV ZINC

rmse | roc-auc 1 rsmse J roc-auc 1 mae |
GIN 1.062 £0.025 65.44+1.9 1.852+£0.044 69.1 2.2 1.262 £ 0.017
GIN+hom 1.006 £0.017 67.5+1.1 1.746 £0.096 71.0+1.9 1.231+0.014
GCN 1.056 +0.035 66.7 & 0.7 1.855 £0.073 69.1 & 2.2 1.281 £0.013
GCN+hom 0.986 £0.015 66.8+1.1 1.735+0.066 72.2+1.4 1.26+0.014
GIN+F 0.739 £0.019 75.4+0.9 1.197 £ 0.061 76.54+2.0 0.208 & 0.005
GIN+hom+F 0.71 £0.021 75.2+0.8 1.014+0.044 77.7+£1.5 0.174+0.005
GCN+F 1.188+1.387 77.240.6 1.197+£0.069 78.3+1.0 0.234 & 0.007
GCN+hom+F 0.816 +0.282 78.0+ 0.6 0.991 £0.045 788 +1.3 0.207 £0.008

Choose number of patterns ¢ and distribution D adaptively:

= stop sampling when expressive enough
= pick D based on the task or a given dataset

Going beyond expressiveness: similarity!

= if G = H then ¢o(G) =~ p(H)
= possible solution: cut distance

International Conference on Machine Learning | ICML 2023

https.//ml-tuw.github.io/

https://pwelke.github.io
https://maxthiessen.ml
https://fjo.gl
https://thomasgaertner.org/
https://ml-tuw.github.io/
https://mlai.cs.uni-bonn.de/
https://icml.cc/2023
https://ml-tuw.github.io/

