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’ Complete in Expectation Homomorphisms
Through the power of random features |
we devise efficiently computable and Let px : G — V depend on a random variable X drawn from a distribution L I G e graphs.. A Map @ Vg = Vi) s
: . graph homomorphism if ¢ preserves edges:
expectation complete graph embeddings. Doveraset & o
We call ¢ x complete in expectation if the expectation {fv,w} € E(F) implies {o(v), o(w)} € E(G).
. Ex- Il = Pr(X =t :
Expressiveness x~plex ()] =) Pr( )t (+)

teX

. Is a complete graph embeddin
Graph representation methods are compared to | P &rap -

each other in terms of expressiveness. That is,
their (theoretical) ability to compute different rep- What is the benefit?

—~——0 ___—0
resentations for pairs of non-isomorphic graphs. \%/ G

Sampling X1, X9, X3, ... will eventually make the
joint embedding (¢x,(G), ©x,(G), px,(G), ... ) arbitrarily expressive

For example, MPNNs are at most as expressive as

the 1-WL isomorphism test. ¢ does not have to be injective (/)

High expressiveness is necessary for learning: If
yvour method cannot distinguish two graphs, it

cannot learn a function that behaves differently Our Approach: Sampling from the Lovasz Vector hom(F, G): number of homomorphisms from F

on these graphs. toG.
Let G,, be the set of all graphs with at most n vertices.

Completeness = the parameter n is typically the size of the largest graph in the sample. The Lovasz Vector

] Theorem. Let D be a distribution with full support on G,, and G € G,,. The graph embedding
G the set of all graphs, V' a vector space (e.g., R%) op(G) = hom(F, Qe

A graph embedding ¢ : G — V is permutation-

Let pp(G) = hom(Gp, G) = (hom(F, G))peg, de-
note the Lovasz vector of GG for G,,.

ith F' ~ D is complete in expectation. 2 '
invariant if for all isomorphic graphs W | P P 'ghi;)reerg [LOV?SZ’ 196;3.]' ;WO (acg;mtrary(%e)aphs
: are isomorphic iff ¢ = .
G~ H:o(G)=p(H) on(G) »pF(G) n | n -
That means that ¢, (+) is complete!
A permutation-invariant graph embedding ¢ is - [20] [0
complete if for all non-isomorphic graphs | 30 [« | 30 ] ]
G H - () # ol H) ~150 Al 0 Properties of Homomorphism Counts
S| 10 [«— &) 10
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1140 |« 1[40 wow ( §03, 0 )= V()]
| | o | 0
b / i 5| 4 how (1003, 0) = L(ELC)
: | 0

: i : | Y] 7
— how (Se, 0=0,6%, A, 3,G)
/ | . L desc-e.e sequemce of G
Vs Proposed embedding: sample multiple pattern graphs F

O UL .-
}/ 4 ﬁ/> = draw a finite sample F i.i.d from D and represent any graph G' € Gy, by howa ((§ o, o A,*’:Z/ 1.¢)

D eicenvabues of ad] (&)
pF(G) = Z or(G) eqen

Originated from complete graph kernels [Gartner et FeF C§F| - bl C) A A= WL D G
al, COLT 2003] = reduces the variance of the embedding \"OM N
= currently ¢ = |F| is a fixed hyperparameter (e.g., £ = 30) howa (§ El 4w(F) < L3, C) Dl WL = le-C W0k
A
Problem L.L,Qew;cw,‘ of T (‘Yree -(,;(.szssj
Counti b hs [Curti tal., STOC 2017
Why do we care about complete graph embed- EﬁCient sampling SCheme ounting subgraphs [Curticapean et a |
dings? sub (e, @) -

. . . . houn .\o\"\o\, , = kowe
Allow us to learn/approximate any Computing hom(F. G) is NP-hard in general. 4> C Q) (bw,&)

permutation-invariant function! - hown L) - Tltho 4
. L If we take the treewidth of pattern F' into account the runtime is [Diaz et al., 2002]: (\o\o’ ) =2, €
Unfortunately computing any such embedding is — A1 houn (A A ) + 3/ uow(4/4)

.- : - tW(F)+1)
at least as hard as deciding graph isomorphism O (]V(F)||V(G)| Y 512 oo (mos) €& = low( e, ¢)
" not known tp be NP_ha'.’d apd not known to be ldea: define distribution D on G,, s.t. runtime is polynomial in expectation!
computable in polynomial-time . .
Tvoical solution: | o offi Theorem. There exists a distribution D such that computing the expectation complete graph em- Universality [NT and Maehara, ICML 2020]:  Any
ypical solution: drop completeness for efficiency bedding ¢ r(G) takes polynomial time in |[V(G)] in expectation for all G € G,,. permutation-invariant function
= most practical graph kernels, GNNs, Weisfeiler General recipe: f:G— R
Leman test, k-WL test, ... ' . L
o ution: ot . tation! 1. pick n as the maximum number of vertices in the training set can be approximated arbitrarily well by a polyno-
ur solution: keep completeness in expectation! 2. sample treewidth upper bound % mial of
3. sample a maximal graph F’ with treewidth & {hom(F,G) | I € G}
4. take a random subgraph F of F'
E.g., k ~ Poi(\) with A < Hd?iogn guarantees runtime O (|V(G)|d+2)
Working on Arbitrary Graph Sizes Empirical Results Relations to £-WL and £-GNNs
If we cannot restrict the size of graphs at inference time, we Our method with ¢ = 30 sampled patterns and the po embedding Theorem. Let D be a distribution with full support on the set

can define a kernel on G5, without restricting to G,, for some of graphs with treewidth up to k. The resulting graph em-

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

n € N. We define the countable-dimensional vector bedding gp’l‘;WL(-) with F' ~ D has the same expressiveness
(G = (hom (F G)) = GHC-tree(6): all tree patterns up to size 6 as the k-WL test in expectation. Furthermore, there is a spe-
> VG pega = GHC-cycle(8): all cycle patterns up to size 8 cific such distribution such that we can compute % "VH(G)

where Additionally: in expected polynomial time O(|V(G)|**1) for all G € G

hom(F,G) if |[V(F)| < |V(G)], = graph neural tangent kernel (GNTK) [Du et al., NeurlPS 2019]

hom v (o (F,G) = .
VI(G)| {0 it |V(F)| > [V(G)]. = GIN [Xu et al., ICLR 2019

That is, Peo(G) Is the projection of pso(G) to the subspace Future Work

that gives us the homomorphism counts for all graphs of size Table 1. Cross-validation accuracies on benchmark datasets
at most of G. Note that this is a well-defined map of graphs

Choose number of patterns ¢ and distribution D adaptively:

to a subspace of the ¢? space, i.e., sequences (z;); over R method MUTAG IMDB-BIN  IMDB-MULTT PAULUS2> Cob . cton campling when exoressive enoueh
with 3 |22 < oo. GHC-tree(6) 89.28 + 8.26 72.10 + 2.62 48.60 + 4.40 7.14 +0.00  10.00 £ 0.00 > E D P dg i pk . dg
! GHC-cycle(8) 87.81 + 7.46 70.93 + 4.54 47.41 +3.67 7.14+ 000  100.00 + 0.00 pick D based on the task or a given dataset

Theorem. oo Is complete. GNTK 89.46 + 7.03 75.61 +3.98 51.91 4+ 3.56 7144+ 000  10.00 + 0.00 " frequent / interesting patterns
T . | . . GIN 83940 &+ 5.60 /70./70 & 1.10 43.20 &+ 2.00 /.14 £ 0.00 10.00 £ 0.00 . . SCTURTRT

neorem. Py is complete in expectation. Wikernel 904457 7319 +04 - 2144000 1000+ 000 Going beyond expressiveness: similarity!
The map oo even maps all graphs into an inner product ours (SVM)  87.94 £ 0.01 70.37 £ 0.01 47.34 £ 0.01 100.00 £ 0.00 37.33 £ 0.1 = if G = H then ¢(G) = ¢(H)
space and allows to compute norms or distances, and to ap- ours (MLP)  88.55+0.01 70.81 £0.01 48.29 £ 0.01 40.524 +£ 0.01 13.27+ 0.01 = possible solution: cut distance (captures local and global
ply kernel methods. properties)
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