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Let G, be the set of all graphs up to n vertices, V be a vector space (e.g. Rd)

A graph embedding ¢ : G —» Vis
permutation-invariant if b
- For all isomorphic graphs G = H:
¢(G) = p(H)
A permutation-invariant graph embedding ¢ is <

complete if Y /
g

- for all non-isomorphic graphs
G#H:p(G) # p(H)
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Complete graph embeddings

Why do we care about complete graph embeddings?
Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

- not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

- most practical graph kernels, GNNs, Weisfeiler Leman test, ...
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What If we keep completeness ...

.. but just In expectation

Pascal Welke



Expectation complete graph embeddings

Let px : G = V depend on a random variable X drawn from a distr. D over a set X'
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Let px : G = V depend on a random variable X drawn from a distr. D over a set X'

We call px complete in expectation if the expectation
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teX

is a complete graph embedding
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Expectation complete graph embeddings

Let px : G = V depend on a random variable X drawn from a distr. D over a set X'

We call px complete in expectation if the expectation

Elex(1= ) PriX =)

is a complete graph embedding

What is the benefit?

Sampling X1, X3, X3, ... will eventually make the
joint embedding (¢x,(G), ¢x,(G), ¢x,(G),...) arbitrarily expressive

W, o U -~ + - B 1
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What If we keep completeness ...
.. but just In expectation
.. In polynomial time
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An intractable complete graph embedding
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complete graph embedding
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complete graph embedding
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Efficient and expectation-complete GNNs

- Homomorphism counting is GNN ErEp MLP

fixed parameter tractable Layers  Pooling

- We design a distribution D that ]
weights down expensive T~
patterns L.

® — y(G)

- And show how to make any G

message passing GNN K ol(E) =) ¢ _

expectation-complete
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