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TL;DR

• We introduce the concept of
expectation-complete graph embeddings
(and kernels)

• We present one example of a
expectation-complete graph embedding
with homomorphisms

• We show how to compute it efficiently
• We train expectation-complete GNNs and show
statistically significant performance
improvements on ten molecular benchmark
datasets

• We prove lots of nice theorems
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Complete graph embeddings

Let Gn be the set of all graphs up to n vertices, V be a vector space (e.g., Rd)

A graph embedding φ ∶ G → V is
permutation-invariant if
• For all isomorphic graphs G ≃ H:
φ(G) = φ(H)

A permutation-invariant graph embedding φ is
complete if
• for all non-isomorphic graphs
G /≃ H ∶ φ(G) ≠ φ(H)

G V
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Complete graph embeddings

Why do we care about complete graph embeddings?

Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding (or kernel) is as hard as deciding
graph isomorphism

• not known to be NP-hard and not known to be computable in
polynomial-time

Typical solution: drop completeness for efficiency

• most practical graph kernels, GNNs, Weisfeiler Leman test, …
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What if we keep completeness …

… but just in expectation
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Expectation complete graph embeddings

Let φX ∶ G → V depend on a random variable X drawn from a distr. D over a set X 1

We call φX complete in expectation if the expectation

E
X∼D

[φX(⋅)] = ∑
t∈X

Pr(X = t)φt(⋅)
is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (φX1(G), φX2(G), φX3(G), . . . ) arbitrarily expressive

Pascal Welke | 1here assumed to be countable, but any set with a probability distribution would do 5
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What if we keep completeness …
… but just in expectation

… in polynomial time
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An intractable complete graph embedding
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Efficient and expectation-complete GNNs

• Homomorphism counting is
fixed parameter tractable

• We design a distribution D that
weights down expensive
patterns

• And show how to make any
message passing GNN
expectation-complete

G

GNN
Layers

Graph
Pooling ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⋮
⋅

φF(G) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋅
⋮
⋅

⊕

MLP

y(G)
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